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1 INTRODUCTION

Setting inflation and discount assumptions is a core part of many actuarial 
tasks. AASB 1023 requires that provisions for general insurance liabilities 
include an allowance for inflation and are discounted at the risk-free 
rate. However, there are a number of issues associated with setting these 
assumptions, including the following:

• What model should be adopted to fit the yield curve from observable 
risk-free securities?

• How should a discount rate curve be extrapolated beyond the last 
observable risk-free asset?

• What are appropriate long-term discount and inflation rates?
• How should inflation rate assumptions vary with respect to changes 

in risk-free rates?

This paper presents an approach to assumption setting that addresses 
these questions in a consistent and coherent manner. The approach is 
faithful to the observed behaviour of the market and previous research on 
the topic. 

2 BACKGROUND

The approach presented in this paper relies heavily on previous research 
undertaken at consultancy firm Taylor Fry, as well as some other sources. 
The most important papers relied upon are described here. These papers in 
turn have more comprehensive lists of references for the interested reader.

2.1 Miller (2010)
This paper, “Towards a better inflation forecast”, investigated inflation 
assumptions and the relationship between inflation and risk-free forward 
rates. The most important conclusions were the following:

• Available industry forecasts, such as those by Access Economics, 
had some use in predicting inflation in the short term, but limited 
effectiveness in medium- to long-term prediction.
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•	 There is an index of models that can describe the relationship between inflation and risk-free 
forward rates. These range from “fixed rate” models (the long-term inflation rate never changes) 
to “fixed gap” models (where a 1% increase in forward rates causes a 1% increase in inflation). 
They are indexed by the “inflation parameter” , with  = 0 corresponding to a fixed rate and  = 1 
corresponding to a fixed gap. 

•	 A range of tests showed that the inflation parameter is closer to 0 than 1. Estimates for the 
parameter using a range of approaches gave a range of 0–0.3 for the inflation parameter for average 
weekly earnings (AWE) inflation.

•	 There is reasonable historical evidence that AWE and labour price index (LPI) inflation are 
different across states. Higher rates for mining states (Western Australia and Queensland) appear 
justified, as are lower rates for some other states (New South Wales, Victoria and Tasmania). 

2.2 Mulquiney and Miller (2014)
This paper “A topic of interest – how to extrapolate the yield curve in Australia”, contained a detailed look 
at yield-curve extrapolation, drawing from data in Australia and overseas. Relevant findings include the 
following:

•	 Medium- to long-term forward rates (around 10 years) have only partial ability to predict very long-
term rates (30 years and beyond). This is indicative of long-term reversion of the forward rate.

•	 The long-term forward rate can be thought of as the combination of inflation expectations, real 
interest rate expectations, a risk premium and convexity adjustment. A long-term forward rate 
assumption in the range 5.4% to 6.2% was judged to be reasonable at this time.

•	 A linear reversion shape to the long-term forward rate was judged reasonable, although other 
shapes are possible.

•	 The rate of reversion was observed to be slow, based on several different tests. Reversion to the long-
term forward rate somewhere between 40 and 80 years was judged reasonable.

2.3 Intergenerational reports
The Australian Treasury regularly publishes the Intergenerational Report, which contains long-range 
projections of the Australian economy. The most recent was published in 2015, and included the following 
assumptions:

•	 long-term bond rates of 6.0%
•	 long-term CPI inflation of 2.5%
•	 long-term AWE inflation of 4.0%.

These assumptions are consistent with previous reports.

2.4 Other background information
A number of changes have been observed in Australian bond markets in recent years that have had a large 
impact on discount rates and how they are forecast. First, the last few years have seen very low bond rates 

(see Figure 1). A consequence of this is that 
discount rate forecasts have become more 
sensitive to the assumptions adopted in 
relation to mean reversion, as the 10-year 
bond rate is no longer close to the long-
term bond rate.

Second, the number and term of 
Australian government bonds on issue 
have increased. In June 2005, 11 bonds 
were on issue with maximum term of 12 
years. In March 2014, 21 bonds were on 
issue with the longest term, 22 years. This 
increases the possible complexity of the 
yield curve shape and decreases the scope 
for a fast reversion of yields.

Figure 2: Schematic for adopted forward rate fitting shape

Figure 1: 10-year forward rate, Australian government bonds, 1992-2014
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Figure 1: 10-year forward rate, Australian government bonds, 1992–2014.
Source: Reserve Bank of Australia, statistics series F16, available at [http://www.rba.gov.au/
statistics/tables/xls-hist/f16hist.xls; http://www.rba.gov.au/statistics/tables/xls-hist/
f16hist-2009-2015.xls].
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3 SETTING DISCOUNT RATES

3.1 Objectives of yield curve fitting
The main objectives of yield curve fitting are to obtain a set of forward rates that:

•	 is smooth: This is generally viewed as a desirable feature. Additionally, non-smooth yield curves 
tend to present more arbitrage opportunity, so they should be less frequent in practice.

•	 fits observable bond prices well: Each bond is viewed as the sum of zero coupon bonds. A good fit 
means that the price of those cash flows based on the forward rates is close to the observed bond 
price.

•	 exhibits reversion over the long term: The model should be able to impose reversion to the long-
term rate at terms beyond observable bond prices.

3.2 Adopted approach – constrained 
cubic spline model

To achieve the objectives outlined in Section 3.1, 
we have assumed that forward rates follow the 
shape illustrated in Figure 2. The model assumes a 
cubic spline shape between term 0 and term t3 with 
two additional interior knots t1 and t2. Further it 
assumes linear reversion between t3 and t4, with a 
constant forward rate beyond t4. 

In terms of equations, the model illustrated in 
Figure 2 is is expressed as:

In terms of equations, the model illustrated in Figure 2 is expressed as: 

	 (1) 

Here when and  otherwise. Additionally, we impose the following 

constraints on the curve: 

1. Reversion	to	the	long-term	rate	 	at	term	 :	
	

	

(2a)	

 
For this particular constraint we have set and  
 

2. Linear reversion between terms t3 and t4. So in this region, Spitting 
constant and 𝑥𝑥 components gives: 

	and	

	

(2b) 

(2c)	

	

The equations (2a), (2b) and (2c) can be solved simultaneously to eliminate e, f and g from (1), 

giving: 

	 (2d)	

	 (2e)	

	
	 (2f)	

with the remaining parameters estimated using observed bond prices. While equations (2a), 

(2b) and (2c) could be used to eliminate any three parameters, we have found eliminating the 

last three to produce the more stable numerical results when fitting to observed prices. 

If  is the observed price of the th bond, and is the corresponding price estimate using 

the forward rate curve, then the parameters in equations (2d), (2e) and (2f) are chosen to 

minimise the weighted squared error: 

	

Error	=	 	 (3)	

where the weight of each bond is equal to with  the modified duration of bond  

𝑓𝑓(𝑥𝑥) = 𝑎𝑎 + 𝑏𝑏𝑥𝑥 + 𝑑𝑑⌊𝑥𝑥 − 0⌋3 + 𝑒𝑒⌊𝑥𝑥 − 𝑡𝑡1⌋3 + 𝑓𝑓⌊𝑥𝑥 − 𝑡𝑡2⌋3 + 𝑔𝑔⌊𝑥𝑥 − 𝑡𝑡3⌋3	

⌊𝑥𝑥⌋ = 𝑥𝑥	 𝑥𝑥 > 0	 ⌊𝑥𝑥⌋ = 0 	

𝑓𝑓∗		 𝑡𝑡4	

𝑓𝑓(𝑡𝑡4) = 𝑎𝑎 + 𝑏𝑏𝑡𝑡4 + 𝑑𝑑(𝑡𝑡4 − 0)3 + 𝑒𝑒⌊𝑡𝑡4 − 𝑡𝑡1⌋3 + 𝑓𝑓(𝑡𝑡4 − 𝑡𝑡2)3 + 𝑔𝑔(𝑡𝑡4 − 𝑡𝑡3)3 = 𝑓𝑓∗	

𝑓𝑓∗ = 6.0%	 𝑡𝑡4 = 50.	

𝑓𝑓′′ (𝑥𝑥) = 0.	

𝑑𝑑 + 𝑒𝑒 + 𝑓𝑓 + 𝑔𝑔 = 0	

𝑒𝑒𝑡𝑡1 + 𝑓𝑓𝑡𝑡2 + 𝑔𝑔𝑡𝑡3 = 0	

𝑒𝑒 =
{𝑓𝑓∗ + 𝑎𝑎 + 𝑏𝑏𝑡𝑡4 + 𝑑𝑑𝑡𝑡43} + 𝑑𝑑{−𝑡𝑡3(𝑡𝑡4 − 𝑡𝑡2)3/(𝑡𝑡3 − 𝑡𝑡2) + 𝑡𝑡2(𝑡𝑡4 − 𝑡𝑡3)3/(𝑡𝑡3 − 𝑡𝑡2)}
−(𝑡𝑡4 − 𝑡𝑡1)3 + (𝑡𝑡3 − 𝑡𝑡1)(𝑡𝑡4 − 𝑡𝑡2)3/(𝑡𝑡3 − 𝑡𝑡2) − (𝑡𝑡2 − 𝑡𝑡1)(𝑡𝑡4 − 𝑡𝑡3)3/(𝑡𝑡3 − 𝑡𝑡2)

	

𝑓𝑓 =  −
𝑒𝑒(𝑡𝑡3 − 𝑡𝑡1) + 𝑑𝑑(𝑡𝑡3 − 0)

𝑡𝑡3 − 𝑡𝑡2
	

𝑔𝑔 = −(𝑑𝑑 + 𝑒𝑒 + 𝑓𝑓)	

𝐵𝐵𝑗𝑗 	 𝑗𝑗	 𝐵𝐵"𝑗𝑗  	

!𝑤𝑤𝑗𝑗$𝐵𝐵𝑗𝑗 − 𝐵𝐵'𝑗𝑗 (
2

𝑗𝑗

	

𝑤𝑤𝑗𝑗  	 1/𝐷𝐷𝑗𝑗2, 	 𝐷𝐷𝑗𝑗 	 𝑗𝑗.	

Author
Deleted: is

Author
Deleted: 	

Author
Deleted: )-(

 

Here 

In terms of equations, the model illustrated in Figure 2 is expressed as: 

	 (1) 

Here when and  otherwise. Additionally, we impose the following 

constraints on the curve: 

1. Reversion	to	the	long-term	rate	 	at	term	 :	
	

	

(2a)	

 
For this particular constraint we have set and  
 

2. Linear reversion between terms t3 and t4. So in this region, Spitting 
constant and 𝑥𝑥 components gives: 

	and	

	

(2b) 

(2c)	

	

The equations (2a), (2b) and (2c) can be solved simultaneously to eliminate e, f and g from (1), 

giving: 

	 (2d)	

	 (2e)	

	
	 (2f)	

with the remaining parameters estimated using observed bond prices. While equations (2a), 

(2b) and (2c) could be used to eliminate any three parameters, we have found eliminating the 

last three to produce the more stable numerical results when fitting to observed prices. 

If  is the observed price of the th bond, and is the corresponding price estimate using 

the forward rate curve, then the parameters in equations (2d), (2e) and (2f) are chosen to 

minimise the weighted squared error: 

	

Error	=	 	 (3)	

where the weight of each bond is equal to with  the modified duration of bond  

𝑓𝑓(𝑥𝑥) = 𝑎𝑎 + 𝑏𝑏𝑥𝑥 + 𝑑𝑑⌊𝑥𝑥 − 0⌋3 + 𝑒𝑒⌊𝑥𝑥 − 𝑡𝑡1⌋3 + 𝑓𝑓⌊𝑥𝑥 − 𝑡𝑡2⌋3 + 𝑔𝑔⌊𝑥𝑥 − 𝑡𝑡3⌋3	

⌊𝑥𝑥⌋ = 𝑥𝑥	 𝑥𝑥 > 0	 ⌊𝑥𝑥⌋ = 0 	

𝑓𝑓∗		 𝑡𝑡4	

𝑓𝑓(𝑡𝑡4) = 𝑎𝑎 + 𝑏𝑏𝑡𝑡4 + 𝑑𝑑(𝑡𝑡4 − 0)3 + 𝑒𝑒⌊𝑡𝑡4 − 𝑡𝑡1⌋3 + 𝑓𝑓(𝑡𝑡4 − 𝑡𝑡2)3 + 𝑔𝑔(𝑡𝑡4 − 𝑡𝑡3)3 = 𝑓𝑓∗	

𝑓𝑓∗ = 6.0%	 𝑡𝑡4 = 50.	

𝑓𝑓′′ (𝑥𝑥) = 0.	

𝑑𝑑 + 𝑒𝑒 + 𝑓𝑓 + 𝑔𝑔 = 0	

𝑒𝑒𝑡𝑡1 + 𝑓𝑓𝑡𝑡2 + 𝑔𝑔𝑡𝑡3 = 0	

𝑒𝑒 =
{𝑓𝑓∗ + 𝑎𝑎 + 𝑏𝑏𝑡𝑡4 + 𝑑𝑑𝑡𝑡43} + 𝑑𝑑{−𝑡𝑡3(𝑡𝑡4 − 𝑡𝑡2)3/(𝑡𝑡3 − 𝑡𝑡2) + 𝑡𝑡2(𝑡𝑡4 − 𝑡𝑡3)3/(𝑡𝑡3 − 𝑡𝑡2)}
−(𝑡𝑡4 − 𝑡𝑡1)3 + (𝑡𝑡3 − 𝑡𝑡1)(𝑡𝑡4 − 𝑡𝑡2)3/(𝑡𝑡3 − 𝑡𝑡2) − (𝑡𝑡2 − 𝑡𝑡1)(𝑡𝑡4 − 𝑡𝑡3)3/(𝑡𝑡3 − 𝑡𝑡2)

	

𝑓𝑓 =  −
𝑒𝑒(𝑡𝑡3 − 𝑡𝑡1) + 𝑑𝑑(𝑡𝑡3 − 0)

𝑡𝑡3 − 𝑡𝑡2
	

𝑔𝑔 = −(𝑑𝑑 + 𝑒𝑒 + 𝑓𝑓)	

𝐵𝐵𝑗𝑗 	 𝑗𝑗	 𝐵𝐵"𝑗𝑗  	

!𝑤𝑤𝑗𝑗$𝐵𝐵𝑗𝑗 − 𝐵𝐵'𝑗𝑗 (
2

𝑗𝑗

	

𝑤𝑤𝑗𝑗  	 1/𝐷𝐷𝑗𝑗2, 	 𝐷𝐷𝑗𝑗 	 𝑗𝑗.	

Author
Deleted: is

Author
Deleted: 	

Author
Deleted: )-(

 otherwise. Additionally, we impose the following constraints on 
the curve:

1. Reversion to the long- term rate 

In terms of equations, the model illustrated in Figure 2 is expressed as: 

	 (1) 

Here when and  otherwise. Additionally, we impose the following 

constraints on the curve: 

1. Reversion	to	the	long-term	rate	 	at	term	 :	
	

	

(2a)	

 
For this particular constraint we have set and  
 

2. Linear reversion between terms t3 and t4. So in this region, Spitting 
constant and 𝑥𝑥 components gives: 

	and	

	

(2b) 

(2c)	

	

The equations (2a), (2b) and (2c) can be solved simultaneously to eliminate e, f and g from (1), 

giving: 

	 (2d)	

	 (2e)	

	
	 (2f)	

with the remaining parameters estimated using observed bond prices. While equations (2a), 

(2b) and (2c) could be used to eliminate any three parameters, we have found eliminating the 

last three to produce the more stable numerical results when fitting to observed prices. 

If  is the observed price of the th bond, and is the corresponding price estimate using 

the forward rate curve, then the parameters in equations (2d), (2e) and (2f) are chosen to 

minimise the weighted squared error: 

	

Error	=	 	 (3)	

where the weight of each bond is equal to with  the modified duration of bond  

𝑓𝑓(𝑥𝑥) = 𝑎𝑎 + 𝑏𝑏𝑥𝑥 + 𝑑𝑑⌊𝑥𝑥 − 0⌋3 + 𝑒𝑒⌊𝑥𝑥 − 𝑡𝑡1⌋3 + 𝑓𝑓⌊𝑥𝑥 − 𝑡𝑡2⌋3 + 𝑔𝑔⌊𝑥𝑥 − 𝑡𝑡3⌋3	

⌊𝑥𝑥⌋ = 𝑥𝑥	 𝑥𝑥 > 0	 ⌊𝑥𝑥⌋ = 0 	

𝑓𝑓∗		 𝑡𝑡4	

𝑓𝑓(𝑡𝑡4) = 𝑎𝑎 + 𝑏𝑏𝑡𝑡4 + 𝑑𝑑(𝑡𝑡4 − 0)3 + 𝑒𝑒⌊𝑡𝑡4 − 𝑡𝑡1⌋3 + 𝑓𝑓(𝑡𝑡4 − 𝑡𝑡2)3 + 𝑔𝑔(𝑡𝑡4 − 𝑡𝑡3)3 = 𝑓𝑓∗	

𝑓𝑓∗ = 6.0%	 𝑡𝑡4 = 50.	

𝑓𝑓′′ (𝑥𝑥) = 0.	

𝑑𝑑 + 𝑒𝑒 + 𝑓𝑓 + 𝑔𝑔 = 0	

𝑒𝑒𝑡𝑡1 + 𝑓𝑓𝑡𝑡2 + 𝑔𝑔𝑡𝑡3 = 0	

𝑒𝑒 =
{𝑓𝑓∗ + 𝑎𝑎 + 𝑏𝑏𝑡𝑡4 + 𝑑𝑑𝑡𝑡43} + 𝑑𝑑{−𝑡𝑡3(𝑡𝑡4 − 𝑡𝑡2)3/(𝑡𝑡3 − 𝑡𝑡2) + 𝑡𝑡2(𝑡𝑡4 − 𝑡𝑡3)3/(𝑡𝑡3 − 𝑡𝑡2)}
−(𝑡𝑡4 − 𝑡𝑡1)3 + (𝑡𝑡3 − 𝑡𝑡1)(𝑡𝑡4 − 𝑡𝑡2)3/(𝑡𝑡3 − 𝑡𝑡2) − (𝑡𝑡2 − 𝑡𝑡1)(𝑡𝑡4 − 𝑡𝑡3)3/(𝑡𝑡3 − 𝑡𝑡2)

	

𝑓𝑓 =  −
𝑒𝑒(𝑡𝑡3 − 𝑡𝑡1) + 𝑑𝑑(𝑡𝑡3 − 0)

𝑡𝑡3 − 𝑡𝑡2
	

𝑔𝑔 = −(𝑑𝑑 + 𝑒𝑒 + 𝑓𝑓)	

𝐵𝐵𝑗𝑗 	 𝑗𝑗	 𝐵𝐵"𝑗𝑗  	

!𝑤𝑤𝑗𝑗$𝐵𝐵𝑗𝑗 − 𝐵𝐵'𝑗𝑗 (
2

𝑗𝑗

	

𝑤𝑤𝑗𝑗  	 1/𝐷𝐷𝑗𝑗2, 	 𝐷𝐷𝑗𝑗 	 𝑗𝑗.	

Author
Deleted: is

Author
Deleted: 	

Author
Deleted: )-(

at term t4:

In terms of equations, the model illustrated in Figure 2 is expressed as: 
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For this particular constraint we have set and  
 

2. Linear reversion between terms t3 and t4. So in this region, Spitting 
constant and 𝑥𝑥 components gives: 

	and	

	

(2b) 

(2c)	

	

The equations (2a), (2b) and (2c) can be solved simultaneously to eliminate e, f and g from (1), 

giving: 

	 (2d)	

	 (2e)	

	
	 (2f)	

with the remaining parameters estimated using observed bond prices. While equations (2a), 

(2b) and (2c) could be used to eliminate any three parameters, we have found eliminating the 

last three to produce the more stable numerical results when fitting to observed prices. 

If  is the observed price of the th bond, and is the corresponding price estimate using 

the forward rate curve, then the parameters in equations (2d), (2e) and (2f) are chosen to 

minimise the weighted squared error: 

	

Error	=	 	 (3)	

where the weight of each bond is equal to with  the modified duration of bond  

𝑓𝑓(𝑥𝑥) = 𝑎𝑎 + 𝑏𝑏𝑥𝑥 + 𝑑𝑑⌊𝑥𝑥 − 0⌋3 + 𝑒𝑒⌊𝑥𝑥 − 𝑡𝑡1⌋3 + 𝑓𝑓⌊𝑥𝑥 − 𝑡𝑡2⌋3 + 𝑔𝑔⌊𝑥𝑥 − 𝑡𝑡3⌋3	

⌊𝑥𝑥⌋ = 𝑥𝑥	 𝑥𝑥 > 0	 ⌊𝑥𝑥⌋ = 0 	

𝑓𝑓∗		 𝑡𝑡4	

𝑓𝑓(𝑡𝑡4) = 𝑎𝑎 + 𝑏𝑏𝑡𝑡4 + 𝑑𝑑(𝑡𝑡4 − 0)3 + 𝑒𝑒⌊𝑡𝑡4 − 𝑡𝑡1⌋3 + 𝑓𝑓(𝑡𝑡4 − 𝑡𝑡2)3 + 𝑔𝑔(𝑡𝑡4 − 𝑡𝑡3)3 = 𝑓𝑓∗	

𝑓𝑓∗ = 6.0%	 𝑡𝑡4 = 50.	

𝑓𝑓′′ (𝑥𝑥) = 0.	

𝑑𝑑 + 𝑒𝑒 + 𝑓𝑓 + 𝑔𝑔 = 0	

𝑒𝑒𝑡𝑡1 + 𝑓𝑓𝑡𝑡2 + 𝑔𝑔𝑡𝑡3 = 0	

𝑒𝑒 =
{𝑓𝑓∗ + 𝑎𝑎 + 𝑏𝑏𝑡𝑡4 + 𝑑𝑑𝑡𝑡43} + 𝑑𝑑{−𝑡𝑡3(𝑡𝑡4 − 𝑡𝑡2)3/(𝑡𝑡3 − 𝑡𝑡2) + 𝑡𝑡2(𝑡𝑡4 − 𝑡𝑡3)3/(𝑡𝑡3 − 𝑡𝑡2)}
−(𝑡𝑡4 − 𝑡𝑡1)3 + (𝑡𝑡3 − 𝑡𝑡1)(𝑡𝑡4 − 𝑡𝑡2)3/(𝑡𝑡3 − 𝑡𝑡2) − (𝑡𝑡2 − 𝑡𝑡1)(𝑡𝑡4 − 𝑡𝑡3)3/(𝑡𝑡3 − 𝑡𝑡2)

	

𝑓𝑓 =  −
𝑒𝑒(𝑡𝑡3 − 𝑡𝑡1) + 𝑑𝑑(𝑡𝑡3 − 0)

𝑡𝑡3 − 𝑡𝑡2
	

𝑔𝑔 = −(𝑑𝑑 + 𝑒𝑒 + 𝑓𝑓)	
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(2a)

 For this particular constraint we have set 

In terms of equations, the model illustrated in Figure 2 is expressed as: 

	 (1) 

Here when and  otherwise. Additionally, we impose the following 

constraints on the curve: 

1. Reversion	to	the	long-term	rate	 	at	term	 :	
	

	

(2a)	

 
For this particular constraint we have set and  
 

2. Linear reversion between terms t3 and t4. So in this region, Spitting 
constant and 𝑥𝑥 components gives: 

	and	

	

(2b) 

(2c)	

	

The equations (2a), (2b) and (2c) can be solved simultaneously to eliminate e, f and g from (1), 

giving: 

	 (2d)	

	 (2e)	

	
	 (2f)	

with the remaining parameters estimated using observed bond prices. While equations (2a), 

(2b) and (2c) could be used to eliminate any three parameters, we have found eliminating the 

last three to produce the more stable numerical results when fitting to observed prices. 

If  is the observed price of the th bond, and is the corresponding price estimate using 

the forward rate curve, then the parameters in equations (2d), (2e) and (2f) are chosen to 

minimise the weighted squared error: 

	

Error	=	 	 (3)	

where the weight of each bond is equal to with  the modified duration of bond  

𝑓𝑓(𝑥𝑥) = 𝑎𝑎 + 𝑏𝑏𝑥𝑥 + 𝑑𝑑⌊𝑥𝑥 − 0⌋3 + 𝑒𝑒⌊𝑥𝑥 − 𝑡𝑡1⌋3 + 𝑓𝑓⌊𝑥𝑥 − 𝑡𝑡2⌋3 + 𝑔𝑔⌊𝑥𝑥 − 𝑡𝑡3⌋3	

⌊𝑥𝑥⌋ = 𝑥𝑥	 𝑥𝑥 > 0	 ⌊𝑥𝑥⌋ = 0 	

𝑓𝑓∗		 𝑡𝑡4	

𝑓𝑓(𝑡𝑡4) = 𝑎𝑎 + 𝑏𝑏𝑡𝑡4 + 𝑑𝑑(𝑡𝑡4 − 0)3 + 𝑒𝑒⌊𝑡𝑡4 − 𝑡𝑡1⌋3 + 𝑓𝑓(𝑡𝑡4 − 𝑡𝑡2)3 + 𝑔𝑔(𝑡𝑡4 − 𝑡𝑡3)3 = 𝑓𝑓∗	

𝑓𝑓∗ = 6.0%	 𝑡𝑡4 = 50.	

𝑓𝑓′′ (𝑥𝑥) = 0.	

𝑑𝑑 + 𝑒𝑒 + 𝑓𝑓 + 𝑔𝑔 = 0	

𝑒𝑒𝑡𝑡1 + 𝑓𝑓𝑡𝑡2 + 𝑔𝑔𝑡𝑡3 = 0	

𝑒𝑒 =
{𝑓𝑓∗ + 𝑎𝑎 + 𝑏𝑏𝑡𝑡4 + 𝑑𝑑𝑡𝑡43} + 𝑑𝑑{−𝑡𝑡3(𝑡𝑡4 − 𝑡𝑡2)3/(𝑡𝑡3 − 𝑡𝑡2) + 𝑡𝑡2(𝑡𝑡4 − 𝑡𝑡3)3/(𝑡𝑡3 − 𝑡𝑡2)}
−(𝑡𝑡4 − 𝑡𝑡1)3 + (𝑡𝑡3 − 𝑡𝑡1)(𝑡𝑡4 − 𝑡𝑡2)3/(𝑡𝑡3 − 𝑡𝑡2) − (𝑡𝑡2 − 𝑡𝑡1)(𝑡𝑡4 − 𝑡𝑡3)3/(𝑡𝑡3 − 𝑡𝑡2)

	

𝑓𝑓 =  −
𝑒𝑒(𝑡𝑡3 − 𝑡𝑡1) + 𝑑𝑑(𝑡𝑡3 − 0)

𝑡𝑡3 − 𝑡𝑡2
	

𝑔𝑔 = −(𝑑𝑑 + 𝑒𝑒 + 𝑓𝑓)	
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2. Linear reversion between terms t3 and t4. So in this region,  

In terms of equations, the model illustrated in Figure 2 is expressed as: 

	 (1) 

Here when and  otherwise. Additionally, we impose the following 

constraints on the curve: 

1. Reversion	to	the	long-term	rate	 	at	term	 :	
	

	

(2a)	

 
For this particular constraint we have set and  
 

2. Linear reversion between terms t3 and t4. So in this region, Spitting 
constant and 𝑥𝑥 components gives: 

	and	

	

(2b) 

(2c)	

	

The equations (2a), (2b) and (2c) can be solved simultaneously to eliminate e, f and g from (1), 

giving: 

	 (2d)	

	 (2e)	

	
	 (2f)	

with the remaining parameters estimated using observed bond prices. While equations (2a), 

(2b) and (2c) could be used to eliminate any three parameters, we have found eliminating the 

last three to produce the more stable numerical results when fitting to observed prices. 

If  is the observed price of the th bond, and is the corresponding price estimate using 

the forward rate curve, then the parameters in equations (2d), (2e) and (2f) are chosen to 

minimise the weighted squared error: 

	

Error	=	 	 (3)	

where the weight of each bond is equal to with  the modified duration of bond  

𝑓𝑓(𝑥𝑥) = 𝑎𝑎 + 𝑏𝑏𝑥𝑥 + 𝑑𝑑⌊𝑥𝑥 − 0⌋3 + 𝑒𝑒⌊𝑥𝑥 − 𝑡𝑡1⌋3 + 𝑓𝑓⌊𝑥𝑥 − 𝑡𝑡2⌋3 + 𝑔𝑔⌊𝑥𝑥 − 𝑡𝑡3⌋3	

⌊𝑥𝑥⌋ = 𝑥𝑥	 𝑥𝑥 > 0	 ⌊𝑥𝑥⌋ = 0 	

𝑓𝑓∗		 𝑡𝑡4	

𝑓𝑓(𝑡𝑡4) = 𝑎𝑎 + 𝑏𝑏𝑡𝑡4 + 𝑑𝑑(𝑡𝑡4 − 0)3 + 𝑒𝑒⌊𝑡𝑡4 − 𝑡𝑡1⌋3 + 𝑓𝑓(𝑡𝑡4 − 𝑡𝑡2)3 + 𝑔𝑔(𝑡𝑡4 − 𝑡𝑡3)3 = 𝑓𝑓∗	

𝑓𝑓∗ = 6.0%	 𝑡𝑡4 = 50.	

𝑓𝑓′′ (𝑥𝑥) = 0.	

𝑑𝑑 + 𝑒𝑒 + 𝑓𝑓 + 𝑔𝑔 = 0	

𝑒𝑒𝑡𝑡1 + 𝑓𝑓𝑡𝑡2 + 𝑔𝑔𝑡𝑡3 = 0	

𝑒𝑒 =
{𝑓𝑓∗ + 𝑎𝑎 + 𝑏𝑏𝑡𝑡4 + 𝑑𝑑𝑡𝑡43} + 𝑑𝑑{−𝑡𝑡3(𝑡𝑡4 − 𝑡𝑡2)3/(𝑡𝑡3 − 𝑡𝑡2) + 𝑡𝑡2(𝑡𝑡4 − 𝑡𝑡3)3/(𝑡𝑡3 − 𝑡𝑡2)}
−(𝑡𝑡4 − 𝑡𝑡1)3 + (𝑡𝑡3 − 𝑡𝑡1)(𝑡𝑡4 − 𝑡𝑡2)3/(𝑡𝑡3 − 𝑡𝑡2) − (𝑡𝑡2 − 𝑡𝑡1)(𝑡𝑡4 − 𝑡𝑡3)3/(𝑡𝑡3 − 𝑡𝑡2)

	

𝑓𝑓 =  −
𝑒𝑒(𝑡𝑡3 − 𝑡𝑡1) + 𝑑𝑑(𝑡𝑡3 − 0)

𝑡𝑡3 − 𝑡𝑡2
	

𝑔𝑔 = −(𝑑𝑑 + 𝑒𝑒 + 𝑓𝑓)	
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 Spitting constant and x 
components gives:

In terms of equations, the model illustrated in Figure 2 is expressed as: 

	 (1) 

Here when and  otherwise. Additionally, we impose the following 

constraints on the curve: 

1. Reversion	to	the	long-term	rate	 	at	term	 :	
	

	

(2a)	

 
For this particular constraint we have set and  
 

2. Linear reversion between terms t3 and t4. So in this region, Spitting 
constant and 𝑥𝑥 components gives: 

	and	

	

(2b) 

(2c)	

	

The equations (2a), (2b) and (2c) can be solved simultaneously to eliminate e, f and g from (1), 

giving: 

	 (2d)	

	 (2e)	

	
	 (2f)	

with the remaining parameters estimated using observed bond prices. While equations (2a), 

(2b) and (2c) could be used to eliminate any three parameters, we have found eliminating the 

last three to produce the more stable numerical results when fitting to observed prices. 

If  is the observed price of the th bond, and is the corresponding price estimate using 

the forward rate curve, then the parameters in equations (2d), (2e) and (2f) are chosen to 

minimise the weighted squared error: 

	

Error	=	 	 (3)	

where the weight of each bond is equal to with  the modified duration of bond  

𝑓𝑓(𝑥𝑥) = 𝑎𝑎 + 𝑏𝑏𝑥𝑥 + 𝑑𝑑⌊𝑥𝑥 − 0⌋3 + 𝑒𝑒⌊𝑥𝑥 − 𝑡𝑡1⌋3 + 𝑓𝑓⌊𝑥𝑥 − 𝑡𝑡2⌋3 + 𝑔𝑔⌊𝑥𝑥 − 𝑡𝑡3⌋3	

⌊𝑥𝑥⌋ = 𝑥𝑥	 𝑥𝑥 > 0	 ⌊𝑥𝑥⌋ = 0 	

𝑓𝑓∗		 𝑡𝑡4	

𝑓𝑓(𝑡𝑡4) = 𝑎𝑎 + 𝑏𝑏𝑡𝑡4 + 𝑑𝑑(𝑡𝑡4 − 0)3 + 𝑒𝑒⌊𝑡𝑡4 − 𝑡𝑡1⌋3 + 𝑓𝑓(𝑡𝑡4 − 𝑡𝑡2)3 + 𝑔𝑔(𝑡𝑡4 − 𝑡𝑡3)3 = 𝑓𝑓∗	

𝑓𝑓∗ = 6.0%	 𝑡𝑡4 = 50.	

𝑓𝑓′′ (𝑥𝑥) = 0.	

𝑑𝑑 + 𝑒𝑒 + 𝑓𝑓 + 𝑔𝑔 = 0	

𝑒𝑒𝑡𝑡1 + 𝑓𝑓𝑡𝑡2 + 𝑔𝑔𝑡𝑡3 = 0	

𝑒𝑒 =
{𝑓𝑓∗ + 𝑎𝑎 + 𝑏𝑏𝑡𝑡4 + 𝑑𝑑𝑡𝑡43} + 𝑑𝑑{−𝑡𝑡3(𝑡𝑡4 − 𝑡𝑡2)3/(𝑡𝑡3 − 𝑡𝑡2) + 𝑡𝑡2(𝑡𝑡4 − 𝑡𝑡3)3/(𝑡𝑡3 − 𝑡𝑡2)}
−(𝑡𝑡4 − 𝑡𝑡1)3 + (𝑡𝑡3 − 𝑡𝑡1)(𝑡𝑡4 − 𝑡𝑡2)3/(𝑡𝑡3 − 𝑡𝑡2) − (𝑡𝑡2 − 𝑡𝑡1)(𝑡𝑡4 − 𝑡𝑡3)3/(𝑡𝑡3 − 𝑡𝑡2)

	

𝑓𝑓 =  −
𝑒𝑒(𝑡𝑡3 − 𝑡𝑡1) + 𝑑𝑑(𝑡𝑡3 − 0)

𝑡𝑡3 − 𝑡𝑡2
	

𝑔𝑔 = −(𝑑𝑑 + 𝑒𝑒 + 𝑓𝑓)	
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Figure 2: Schematic for adopted forward rate fitting shape

Figure 1: 10-year forward rate, Australian government bonds, 1992-2014
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 Figure 2: Schematic for adopted forward rate fitting shape.

135AN APPROACH TO SE T TING INFL ATION AND DISCOUNT R ATES



The equations (2a)-(), (2b) and (2c) can be solved simultaneously to eliminate e, f and g from (1), giving:

  

In terms of equations, the model illustrated in Figure 2 is expressed as: 

	 (1) 

Here when and  otherwise. Additionally, we impose the following 

constraints on the curve: 

1. Reversion	to	the	long-term	rate	 	at	term	 :	
	

	

(2a)	

 
For this particular constraint we have set and  
 

2. Linear reversion between terms t3 and t4. So in this region, Spitting 
constant and 𝑥𝑥 components gives: 

	and	

	

(2b) 

(2c)	

	

The equations (2a), (2b) and (2c) can be solved simultaneously to eliminate e, f and g from (1), 

giving: 

	 (2d)	

	 (2e)	

	
	 (2f)	

with the remaining parameters estimated using observed bond prices. While equations (2a), 

(2b) and (2c) could be used to eliminate any three parameters, we have found eliminating the 

last three to produce the more stable numerical results when fitting to observed prices. 

If  is the observed price of the th bond, and is the corresponding price estimate using 

the forward rate curve, then the parameters in equations (2d), (2e) and (2f) are chosen to 

minimise the weighted squared error: 

	

Error	=	 	 (3)	

where the weight of each bond is equal to with  the modified duration of bond  

𝑓𝑓(𝑥𝑥) = 𝑎𝑎 + 𝑏𝑏𝑥𝑥 + 𝑑𝑑⌊𝑥𝑥 − 0⌋3 + 𝑒𝑒⌊𝑥𝑥 − 𝑡𝑡1⌋3 + 𝑓𝑓⌊𝑥𝑥 − 𝑡𝑡2⌋3 + 𝑔𝑔⌊𝑥𝑥 − 𝑡𝑡3⌋3	

⌊𝑥𝑥⌋ = 𝑥𝑥	 𝑥𝑥 > 0	 ⌊𝑥𝑥⌋ = 0 	

𝑓𝑓∗		 𝑡𝑡4	

𝑓𝑓(𝑡𝑡4) = 𝑎𝑎 + 𝑏𝑏𝑡𝑡4 + 𝑑𝑑(𝑡𝑡4 − 0)3 + 𝑒𝑒⌊𝑡𝑡4 − 𝑡𝑡1⌋3 + 𝑓𝑓(𝑡𝑡4 − 𝑡𝑡2)3 + 𝑔𝑔(𝑡𝑡4 − 𝑡𝑡3)3 = 𝑓𝑓∗	

𝑓𝑓∗ = 6.0%	 𝑡𝑡4 = 50.	

𝑓𝑓′′ (𝑥𝑥) = 0.	
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with the remaining parameters estimated using observed bond prices. While equations (2a), (2b) and (2c) 
could be used to eliminate any three parameters, we have found eliminating the last three to produce the 
more stable numerical results when fitting to observed prices.

If  Bj is the observed price of the jth bond, and 

In terms of equations, the model illustrated in Figure 2 is expressed as: 
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 is the corresponding price estimate using the forward 
rate curve, then the parameters in equations (2d), (2e) and (2f) are chosen to minimise the weighted 
squared error:

In terms of equations, the model illustrated in Figure 2 is expressed as: 
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Here when and  otherwise. Additionally, we impose the following 

constraints on the curve: 

1. Reversion	to	the	long-term	rate	 	at	term	 :	
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The equations (2a), (2b) and (2c) can be solved simultaneously to eliminate e, f and g from (1), 

giving: 

	 (2d)	

	 (2e)	

	
	 (2f)	

with the remaining parameters estimated using observed bond prices. While equations (2a), 
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last three to produce the more stable numerical results when fitting to observed prices. 

If  is the observed price of the th bond, and is the corresponding price estimate using 

the forward rate curve, then the parameters in equations (2d), (2e) and (2f) are chosen to 
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where the weight of each bond wj is equal to 1/Dj2 with Dj the modified duration of bond j. 

Two of the parameters in equation (2d), t4 and f*, are set subjectively as described in section 3.3. The 
remaining unknown parameters a, b and d and knots t1, t2 and t4 are chosen to minimise (3) using a non-
linear optimiser. We have implemented this using the Solver functionality in Microsoft Excel.

3.3 Further comment on subjective assumptions 
There are two important assumptions in this fitting model that are required to be set subjectively. These are 
the choices for t4, the point at which the ultimate long-term rate is achieved (here it is a term of 50 years), 
and the long-term rate itself f* set to 6.0%. These assumptions have been selected with reference to the 
studies cited in section 2. 

3.4 Alternative approaches for yield curve fitting 
Before adopting the above cubic spline–based fitting approach, we considered the approaches detailed in 
Nelson and Siegel (1987), Svensson (1994), Li, DeWetering, Lucas, Brenner and Shapiro (2001), and Smith 
and Wilson (2001). 

While all could probably be amended to meet the objectives set out in section 3.1, none did so “out-
of-the-box”. Further, differences in fitting approaches tend to be immaterial apart from the assumptions 
related to extrapolation: as long as the curve is sufficiently flexible, it should give a reasonable fit of the 
observable securities. Other comparisons of approaches exist – see for instance Bolder and Gusba (2002).

4 SETTING INFLATION RATES

4.1 Our approach
Our approach to forecasting inflation is as follows:

1. Adopt a third party econometric forecast in the short term (the first two years).
2. For the fifth year and beyond, adopt an inflation rate based on the estimated forward rate:

Two of the parameters in equation (2d), t4	and are set subjectively as described in section 

3.3. The remaining unknown parameters a, b and d and knots t1, t2 and t4 are chosen to 

minimise (3) using a non-linear optimiser. We have implemented this using the Solver 

functionality in Microsoft Excel. 

3.3 Further comment on subjective assumptions  

There are two important assumptions in this fitting model that are required to be set 

subjectively. These are the choices for t4, the point at which the ultimate long-term rate is 

achieved (here it is a term of 50 years), and the long-term rate itself set to 6.0%. These 

assumptions have been selected with reference to the studies cited in section 2.  

3.4 Alternative approaches for yield curve fitting  

Before adopting the above cubic spline–based fitting approach, we considered the approaches 

detailed in Nelson and Siegel (1987), Svensson (1994), Li, DeWetering, Lucas, Brenner and 

Shapiro (2001), and Smith and Wilson (2001).  

While all could probably be amended to meet the objectives set out in section 3.1, none did 

so “out-of-the-box”. Further, differences in fitting approaches tend to be immaterial apart 

from the assumptions related to extrapolation: as long as the curve is sufficiently flexible, it 

should give a reasonable fit of the observable securities. Other comparisons of approaches 

exist – see for instance Bolder and Gusba (2002). 

4 SETTING INFLATION RATES 

4.1 Our approach 

Our approach to forecasting inflation is as follows: 

1. Adopt a third party econometric forecast in the short term (the first two years). 

2. For the fifth year and beyond, adopt an inflation rate based on the estimated forward 

rate: 

3. For the third and fourth years, linearly blend between the two approaches. 

𝑓𝑓∗, 	

𝑓𝑓∗, 	

	 (4)	𝑖𝑖(𝑡𝑡) = 𝑖𝑖∗ + 𝜃𝜃{𝑓𝑓(𝑡𝑡) − 𝑓𝑓∗}	  

3. For the third and fourth years, linearly blend between the two approaches.
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This approach is an extension of the model proposed in Miller (2010), which used an equation similar 
to (4) to estimate medium-term inflation expectations as a function of long-term bond yields. The 
formulation in (4) makes the further strong assumption that this relationship holds over the term of the 
yield curve, so inflation forecasts mean-revert with a similar shape (but smaller amplitude) in line with 
forward rates. While mean-reversion of inflation rates is intuitively appealing, we have not formally tested 
the speed of reversion relative to that of bond yields. Other approaches to inflation reversion are certainly 
possible; the attraction of (4) is that linking the inflation and yield curves to have similar shapes makes 
liability movements more predictable over time.

The blending in the third and fourth years helps avoid a cliff in forecasts, should the econometric and 
formula based forecasts materially differ.

In terms of explicit assumptions:
•	 We have selected i* = 2.5% for CPI inflation (the centre of the RBA target band and consistent with 

the 2015 Intergenerational Report), i* = 3.6% for LPI inflation (consistent with long-run historical 
averages) and  i* = 4.0% for AWE inflation (consistent with the Intergenerational Report and long-
run averages).

•	 We have selected   = 0.5 as the inflation parameter. Although higher than estimates in Miller 
(2010), it captures some of the sensitivity of inflation to nominal interest rates and provides a 
balance between the “fixed inflation” and “fixed gap” extremes.

•	 We apply capping to the CPI forecast so that it does not exit the RBA target band (2.0%–3.0%). That 
is, for CPI the adopted formula is slightly modified:

 

This approach is an extension of the model proposed in Miller (2010), which used an 

equation similar to (4) to estimate medium-term inflation expectations as a function of long-

term bond yields. The formulation in (4) makes the further strong assumption that this 

relationship holds over the term of the yield curve, so inflation forecasts mean-revert with a 

similar shape (but smaller amplitude) in line with forward rates. While mean-reversion of 

inflation rates is intuitively appealing, we have not formally tested the speed of reversion 

relative to that of bond yields. Other approaches to inflation reversion are certainly possible; 

the attraction of (4) is that linking the inflation and yield curves to have similar shapes makes 

liability movements more predictable over time. 

The blending in the third and fourth years helps avoid a cliff in forecasts, should the 

econometric and formula based forecasts materially differ. 

In terms of explicit assumptions: 

• We have selected 2.5% for CPI inflation (the centre of the RBA target band and 

consistent with the 2015 Intergenerational Report), 3.6% for LPI inflation 

(consistent with long-run historical averages) and 4.0% for AWE inflation 

(consistent with the Intergenerational Report and long-run averages). 

• We have selected 0.5 as the inflation parameter. Although higher than estimates 

in Miller (2010), it captures some of the sensitivity of inflation to nominal interest rates 

and provides a balance between the “fixed inflation” and “fixed gap” extremes. 

• We apply capping to the CPI forecast so that it does not exit the RBA target band 

(2.0%–3.0%). That is, for CPI the adopted formula is slightly modified: 

 

•  and  are consistent with the previous section, with 6.0% (consistent with 
the Intergenerational Report). 

4.2 Modifiers for difference states 

In addition to the Australia-level forecasts in the previous subsection, we add modifiers to 

certain states: 

• + 0.5% for LPI and AWE inflation for Western Australia and Queensland. 

𝑖𝑖∗ =	

𝑖𝑖∗ =	

𝑖𝑖∗ =	

𝜃𝜃 =	

𝑖𝑖(𝑡𝑡) = min(3.0%,𝑚𝑚𝑚𝑚𝑚𝑚(2.0%, 𝑖𝑖∗ + 𝜃𝜃{𝑓𝑓(𝑡𝑡) − 𝑓𝑓∗}))	

𝑓𝑓(𝑡𝑡) 	 𝑓𝑓∗		 𝑓𝑓∗ =	
•	 f(t) and  f* are consistent with the previous section, with f*= 6.0% (consistent with the 

Intergenerational Report).

4.2 Modifiers for difference states
In addition to the Australia-level forecasts in the previous subsection, we add modifiers to certain states:

•	 + 0.5% for LPI and AWE inflation for Western Australia and Queensland.
•	 – 0.25% for LPI and AWE inflation for New South Wales, Victoria and Tasmania.

Although these differentials were estimated in 2010, they have proven reasonably accurate over the 
past few years: see Table 1. However, these factors will have to be reviewed regularly; the cyclical trends 
in resource markets will tend to influence appropriate choices for state-based differences, and there is 
already some early evidence of Western Australian inflation falling back to national levels (see for example 
Nicholls & Rosewall 2015)

Table 1: Historical AWE growth differentials for each state.

 Time period State difference from national average Aust

NSW VIC QLD SA WA TAS NT ACT AWE

Jun 02 – Jun 06 –0.3% –0.4% 0.4% 0.3% 1.3% –1.3% 0.6% 1.2% 4.5%

Jun 06 – Jun 10 –0.7% –0.5% 0.9% –0.9% 1.8% 0.6% –0.2% 0.4% 4.9%

Jun 10  – Jun 14 –0.6% –0.4% 0.3% –0.5% 1.5% 0.8% 1.5% 0.6% 3.9%

Note: Based on ABS average weekly full time earnings, trend series, available at:.
Source: [http://www.abs.gov.au/AUSSTATS/abs@.nsf/DetailsPage/6302.0May%202012?OpenDocument; http://www.abs.gov.au/AUSSTATS/
abs@.nsf/DetailsPage/6302.0Nov%202016?OpenDocument].
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5 CONCLUSION

This paper presents a combined approach to inflation 
and discount rate assumption–setting that should 
be appropriate for a wide range of actuarial contexts. 
Interested readers are encouraged to seek out the 
referenced papers, as well as contact Taylor Fry directly 
for further information.
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